| 318 |  ...  | 
| 319 |   fjxxi = Real_t(.125) * ( (x6-x0) + (x5-x3) - (x7-x1) - (x4-x2) ); | 
| 320 |   fjxet = Real_t(.125) * ( (x6-x0) - (x5-x3) + (x7-x1) - (x4-x2) ); | 
| 321 |   fjxze = Real_t(.125) * ( (x6-x0) + (x5-x3) + (x7-x1) + (x4-x2) ); | 
| 322 |  | 
| 323 |   fjyxi = Real_t(.125) * ( (y6-y0) + (y5-y3) - (y7-y1) - (y4-y2) ); | 
| 324 |   fjyet = Real_t(.125) * ( (y6-y0) - (y5-y3) + (y7-y1) - (y4-y2) ); | 
| 325 |   fjyze = Real_t(.125) * ( (y6-y0) + (y5-y3) + (y7-y1) + (y4-y2) ); | 
| 326 |  | 
| 327 |   fjzxi = Real_t(.125) * ( (z6-z0) + (z5-z3) - (z7-z1) - (z4-z2) ); | 
| 328 |   fjzet = Real_t(.125) * ( (z6-z0) - (z5-z3) + (z7-z1) - (z4-z2) ); | 
| 329 |   fjzze = Real_t(.125) * ( (z6-z0) + (z5-z3) + (z7-z1) + (z4-z2) ); | 
| 330 |  ...  | 
| 365 |  ...  | 
| 366 |   b[2][0] =   -  cjzxi  -  cjzet  -  cjzze; | 
| 367 |   b[2][1] =      cjzxi  -  cjzet  -  cjzze; | 
| 368 |   b[2][2] =      cjzxi  +  cjzet  -  cjzze; | 
| 369 |  ...  | 
| 389 |  ...  | 
| 390 | { | 
| 391 |    Real_t bisectX0 = Real_t(0.5) * (x3 + x2 - x1 - x0); | 
| 392 |    Real_t bisectY0 = Real_t(0.5) * (y3 + y2 - y1 - y0); | 
| 393 |    Real_t bisectZ0 = Real_t(0.5) * (z3 + z2 - z1 - z0); | 
| 394 |    Real_t bisectX1 = Real_t(0.5) * (x2 + x1 - x3 - x0); | 
| 395 |    Real_t bisectY1 = Real_t(0.5) * (y2 + y1 - y3 - y0); | 
| 396 |    Real_t bisectZ1 = Real_t(0.5) * (z2 + z1 - z3 - z0); | 
| 397 |    Real_t areaX = Real_t(0.25) * (bisectY0 * bisectZ1 - bisectZ0 * bisectY1); | 
| 398 |  ...  | 
| 601 |  ...  | 
| 602 |    *dvdx = | 
| 603 |       (y1 + y2) * (z0 + z1) - (y0 + y1) * (z1 + z2) + | 
| 604 |       (y0 + y4) * (z3 + z4) - (y3 + y4) * (z0 + z4) - | 
| 605 |       (y2 + y5) * (z3 + z5) + (y3 + y5) * (z2 + z5); | 
| 606 |    *dvdy = | 
| 607 |       - (x1 + x2) * (z0 + z1) + (x0 + x1) * (z1 + z2) - | 
| 608 |       (x0 + x4) * (z3 + z4) + (x3 + x4) * (z0 + z4) + | 
| 609 |       (x2 + x5) * (z3 + z5) - (x3 + x5) * (z2 + z5); | 
| 610 |  ...  | 
| 679 |  ...  | 
| 680 |       hgfx[i] = coefficient * | 
| 681 |                 (hourgam[i][0] * hxx[0] + hourgam[i][1] * hxx[1] + | 
| 682 |                  hourgam[i][2] * hxx[2] + hourgam[i][3] * hxx[3]); | 
| 683 |    } | 
| 684 |  ...  | 
| 690 |  ...  | 
| 691 |       hgfy[i] = coefficient * | 
| 692 |                 (hourgam[i][0] * hxx[0] + hourgam[i][1] * hxx[1] + | 
| 693 |                  hourgam[i][2] * hxx[2] + hourgam[i][3] * hxx[3]); | 
| 694 |    } | 
| 695 |  ...  | 
| 701 |  ...  | 
| 702 |       hgfz[i] = coefficient * | 
| 703 |                 (hourgam[i][0] * hxx[0] + hourgam[i][1] * hxx[1] + | 
| 704 |                  hourgam[i][2] * hxx[2] + hourgam[i][3] * hxx[3]); | 
| 705 |    } | 
| 706 |  ...  | 
| 1376 |  ...  | 
| 1377 | { | 
| 1378 |    Real_t fx = (x2 - x0) - (x3 - x1); | 
| 1379 |    Real_t fy = (y2 - y0) - (y3 - y1); | 
| 1380 |    Real_t fz = (z2 - z0) - (z3 - z1); | 
| 1381 |    Real_t gx = (x2 - x0) + (x3 - x1); | 
| 1382 |    Real_t gy = (y2 - y0) + (y3 - y1); | 
| 1383 |    Real_t gz = (z2 - z0) + (z3 - z1); | 
| 1384 |  ...  | 
| 1532 |  ...  | 
| 1533 |     domain.vnew(k) = relativeVolume ; | 
| 1534 |     domain.delv(k) = relativeVolume - domain.v(k) ; | 
| 1535 |  | 
| 1536 |  ...  | 
| 1591 |  ...  | 
| 1592 |          domain.vdov(k) = vdov ; | 
| 1593 |          domain.dxx(k) -= vdovthird ; | 
| 1594 |          domain.dyy(k) -= vdovthird ; | 
| 1595 |          domain.dzz(k) -= vdovthird ; | 
| 1596 |  | 
| 1597 |  ...  | 
| 1689 |  ...  | 
| 1690 |  | 
| 1691 |       Real_t dxj = Real_t(-0.25)*((x0+x1+x5+x4) - (x3+x2+x6+x7)) ; | 
| 1692 |       Real_t dyj = Real_t(-0.25)*((y0+y1+y5+y4) - (y3+y2+y6+y7)) ; | 
| 1693 |       Real_t dzj = Real_t(-0.25)*((z0+z1+z5+z4) - (z3+z2+z6+z7)) ; | 
| 1694 |  | 
| 1695 |       Real_t dxi = Real_t( 0.25)*((x1+x2+x6+x5) - (x0+x3+x7+x4)) ; | 
| 1696 |       Real_t dyi = Real_t( 0.25)*((y1+y2+y6+y5) - (y0+y3+y7+y4)) ; | 
| 1697 |       Real_t dzi = Real_t( 0.25)*((z1+z2+z6+z5) - (z0+z3+z7+z4)) ; | 
| 1698 |  | 
| 1699 |       Real_t dxk = Real_t( 0.25)*((x4+x5+x6+x7) - (x0+x1+x2+x3)) ; | 
| 1700 |       Real_t dyk = Real_t( 0.25)*((y4+y5+y6+y7) - (y0+y1+y2+y3)) ; | 
| 1701 |       Real_t dzk = Real_t( 0.25)*((z4+z5+z6+z7) - (z0+z1+z2+z3)) ; | 
| 1702 |  ...  | 
| 1803 |  ...  | 
| 1804 |  | 
| 1805 |       phixi = Real_t(.5) * ( delvm + delvp ) ; | 
| 1806 |  | 
| 1807 |  ...  | 
| 1841 |  ...  | 
| 1842 |  | 
| 1843 |       phieta = Real_t(.5) * ( delvm + delvp ) ; | 
| 1844 |  | 
| 1845 |  ...  | 
| 1878 |  ...  | 
| 1879 |  | 
| 1880 |       phizeta = Real_t(.5) * ( delvm + delvp ) ; | 
| 1881 |  | 
| 1882 |  ...  | 
| 2255 |  ...  | 
| 2256 |             Real_t vchalf ; | 
| 2257 |             compression[i] = Real_t(1.) / vnewc[ielem] - Real_t(1.); | 
| 2258 |             vchalf = vnewc[ielem] - delvc[i] * Real_t(.5); | 
| 2259 |             compHalfStep[i] = Real_t(1.) / vchalf - Real_t(1.); | 
| 2260 |          } | 
| 2261 |  ...  |